
98

Chapter 4

In this chapter:
• Windows
• Views
• Messaging4

Windows, Views, and
Messages 4.

A window serves as a program’s means of communicating with the user. In order
to provide information to a user, a window needs to be able to draw either text or
graphics. And in order to receive information from a user, a window needs to be
aware of user actions such as mouse button clicks or key presses. Views make
both these modes of communication possible. All drawing takes place in views.
And views are recipients of messages that are transmitted from the Application
Server to the program in response to user actions. All three of these topics—win-
dows, views, and messages—can be discussed individually, and this chapter does
just that. To be of real use, though, the interaction of these topics must be
described; this chapter of course does that as well.

Windows
Your program’s windows will be objects of a class, or classes, that your project
derives from the BWindow class. The BWindow class is one of many classes in the
Interface Kit—the largest of the Be kits. Most other Interface Kit class objects draw
to a window, so they expect a BWindow object to exist—they work in conjunction
with the window object.

Because it is a type of BLooper, a BWindow object runs in its own thread and runs
its own message loop. This loop is used to receive and respond to messages from
the Application Server. In this chapter’s “Messaging” section, you’ll see how a win-
dow often delegates the handling of a message to one of the views present in the
window. The ever-present interaction of windows, views, and messages accounts
for the combining of these three topics in this chapter.

Windows 99

Window Characteristics

A window’s characteristics—its size, screen location, and peripheral elements
(close button, zoom button, and so forth)—are all established in the constructor of
the BWindow-derived class of the window.

BWindow constructor

A typical BWindow-derived class constructor is often empty:

MyHelloWindow::MyHelloWindow(BRect frame)
 :BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
}

The purpose of the constructor is to pass window size and window screen loca-
tion on to the BWindow constructor. In this next snippet, this is done by invoking
the MyHelloWindow constructor, using the BRect parameter frame as the first
argument in the BWindow constructor:

MyHelloWindow *aWindow;
BRect aRect(20, 30, 250, 100);

aWindow = new MyHelloWindow(aRect);

It is the BWindow constructor that does the work of creating a new window. The
four BWindow constructor parameters allow you to specify the window’s:

• Size and screen placement

• Title

• Type or look

• Behavioral and peripheral elements

The BWindow constructor prototype, shown here, has four required parameters
and an optional fifth. Each of the five parameters is discussed following this proto-
type:

BWindow(BRect frame,
 const char *title,
 window_type type,
 ulong flags,
 ulong workspaces = B_CURRENT_WORKSPACE)

Window size and location (frame argument)

The first BWindow constructor parameter, frame, is a rectangle that defines both
the size and screen location of the window. The rectangle’s coordinates are rela-
tive to the screen’s coordinates. The top left corner of the screen is point (0, 0),
and coordinate values increase when referring to a location downward or

100 Chapter 4: Windows, Views, and Messages

rightward. For instance, the lower right corner of a 640 × 480 screen has a screen
coordinate point of (639, 479). Because the initialization of a BRect variable is
specified in the order left, top, right, bottom; the following declaration results in a
variable that can be used to create a window that has a top left corner fifty pixels
from the top of the user’s screen and seventy pixels in from the left of that screen:

BRect frame(50, 70, 350, 270);

The width of the window based on frame is determined simply from the delta of
the first and third BRect initialization parameters, while the height is the differ-
ence between the second and fourth. The above declaration results in a rectangle
that could be used to generate a window 301 pixels wide by 201 pixels high. (The
“extra” pixel in each direction is the result of zero-based coordinate systems.)

The frame coordinates specify the content area of a window—the window’s title
tab is not considered. For titled windows, you’ll want to use a top coordinate of at
least 20 so that none of the window’s title tab ends up off the top of the user’s
screen.

If your program creates a window whose size depends on the dimensions of the
user’s screen, make use of the BScreen class. A BScreen object holds informa-
tion about one screen, and the BScreen member functions provide a means for
your program to obtain information about this monitor. Invoking Frame(), for
instance, returns a BRect that holds the coordinates of the user’s screen. This next
snippet shows how this rectangle is used to determine the width of a monitor:

BScreen mainScreen(B_MAIN_SCREEN_ID);
BRect screenRect;
int32 screenWidth;

screenRect = mainScreen->Frame();
screenWidth = screenRect.right - screenRect.left;

As of this writing, the BeOS supports only a single monitor, but the above snippet
anticipates that this will change. The Be-defined constant B_MAIN_SCREEN_ID is
used to create an object that represents the user’s main monitor (the monitor that
displays the Deskbar). Additionally, the width of the screen can be determined by
subtracting the left coordinate from the right, and the height by subtracting the top
from the bottom. On the main monitor, the left and top fields of the BRect
returned by Frame() are 0, so the right and bottom fields provide the width
and height of this screen. When an additional monitor is added, though, the left
and top fields will be non-zero; they’ll pick up where the main screen “ends.”

Window title

The second BWindow constructor argument, title, establishes the title that is to
appear in the window’s tab. If the window won’t display a tab, this parameter

Windows 101

value is unimportant—you can pass NULL or an empty string ("") here (though
you may want to include a name in case your program may eventually access the
window through scripting.

Window type

The third BWindow constructor parameter, type, defines the style of window to be
created. Here you use one of five Be-defined constants:

B_DOCUMENT_WINDOW
Is the most common type, and creates a nonmodal window that has a title tab.
Additionally, the window has right and bottom borders that are thinner than
the border on its other two sides. This narrower border is designed to inte-
grate well with the scrollbars that may be present in such a window.

B_TITLED_WINDOW
Results in a nonmodal window that has a title tab.

B_MODAL_WINDOW
Creates a modal window, a window that prevents other application activity
until it is dismissed. Such a window is also referred to as a dialog box. A win-
dow of this type has no title tab.

B_BORDERED_WINDOW
Creates a nonmodal window that has no title tab.

B_FLOATING_WINDOW
Creates a window that floats above (won’t be obscured by) other application
windows.

There’s another version of the BWindow constructor that has two
parameters (look and feel) in place of the one type parameter dis-
cussed above. The separate look and feel parameters provide a
means of more concisely stating just how a window is to look and
behave. The single type parameter can be thought of as a shorthand
notation that encapsulates both these descriptions. Refer to the
BWindow class section of the Interface Kit chapter of the Be Book for
more details (and a list of Be-defined look and feel constants).

Window behavior and elements

The fourth BWindow constructor argument, flags, determines a window’s behav-
ior (such as whether the window is movable) and the window’s peripheral ele-
ments (such as the presence of a title tab or zoom button). There are a number of
Be-defined constants that can be used singly or in any combination to achieve the
desired window properties. To use more than a single constant, list each and

102 Chapter 4: Windows, Views, and Messages

separate them with the OR (|) operator. The following example demonstrates how
to create a window that has no zoom button or close button:

MyHelloWindow::MyHelloWindow(BRect frame)
 :BWindow(frame, windowName, B_TITLED_WINDOW, B_NOT_ZOOMABLE | B_NOT_
CLOSABLE)
{
}

If you use 0 (zero) as the fourth parameter, it serves as a shortcut for specifying
that a window include all the characteristics expected of a titled window. Default
windows are movable, resizable, and have close and zoom buttons:

MyHelloWindow::MyHelloWindow(BRect frame)
 :BWindow(frame, windowName, B_TITLED_WINDOW, 0)
{
}

The following briefly describes many of the several Be-defined constants available
for use as the fourth parameter in the BWindow constructor:

B_NOT_MOVABLE
Creates a window that cannot be moved—even if the window has a title tab.
By default, a window with a title tab is movable.

B_NOT_H_RESIZABLE
Generates a window that can’t be resized horizontally. By default, a window
can be resized both horizontally and vertically.

B_NOT_V_RESIZABLE
Generates a window that can’t be resized vertically. By default, a window can
be resized both horizontally and vertically.

B_NOT_RESIZABLE
Creates a window that cannot be resized horizontally or vertically.

B_NOT_CLOSABLE
Results in a window that has no close button. By default, a window with a
title tab has a close button.

B_NOT_ZOOMABLE
Results in a window that has no zoom box. By default, a window with a title
tab has a zoom box.

B_NOT_MINIMIZABLE
Defines a window that cannot be minimized (collapsed). By default, a win-
dow can be minimized by double-clicking on the window’s title bar.

Windows 103

B_WILL_ACCEPT_FIRST_CLICK
Results in a window that is aware of mouse button clicks in it—even when the
window isn’t frontmost. By default, a window is aware only of mouse button
clicks that occur when the window is the frontmost, or active, window.

Workspace

The BWindow constructor has an optional fifth parameter, workspaces, that speci-
fies which workspace or workspaces should contain the new window. Desktop
information such as screen resolution and color depth (number of bits of color
data per pixel) can be adjusted by the user. Different configurations can be saved
to different workspaces. Workspaces can be thought of as virtual monitors to
which the user can switch. Under different circumstances, a user may wish to dis-
play different types of desktops. By omitting this parameter, you tell the BWindow
constructor to use the default Be-defined constant B_CURRENT_WORKSPACE. Doing
so means the window will show up in whatever workspace is currently selected
by the user. To create a window that appears in all of the user’s workspaces, use
the Be-defined constant B_ALL_WORKSPACES as the fifth parameter to the BWindow
constructor.

You can find out more about workspaces from the user’s perspec-
tive in the BeOS User’s Guide, and from the programmer’s per-
spective in the BWindow constructor section of the Interface Kit
chapter of the Be Book.

Accessing Windows

Fortunately for you, the programmer, the Be operating system takes care of much
of the work in keeping track of your application’s windows and the user’s actions
that affect those windows. There will be times, however, when you’ll need to
directly manipulate one or all of your program’s windows. For instance, you may
want to access the frontmost window to draw to it, or access all open windows to
implement a Close All menu item.

The Application Server keeps a list that holds references to an application’s open
windows. The list indices begin at 0, and continue integrally. The windows aren’t
entered in this list in any predefined order, so you can’t rely on a particular index
referencing a particular window. You can, however, use the BApplication mem-
ber function WindowAt() to find any given window.

104 Chapter 4: Windows, Views, and Messages

Accessing a window using WindowAt()

WindowAt() accepts a single argument, an integer that serves as a window list
index. Calling WindowAt() returns the BWindow object this index references. A
call to WindowAt() returns the first window in the list:

BWindow *aWindow;

aWindow = be_app->WindowAt(0);

From Chapter 1, BeOS Programming Overview, you know that the Be-defined glo-
bal variable be_app always points to the active application, so you can use it any-
where in your code to invoke a BApplication member function such as
WindowAt().

When WindowAt() is passed a value that is an out-of-bounds index, the routine
returns NULL. You can use this fact to create a simple loop that accesses each
open window:

BWindow *theWindow;
int32 i = 0;

while (theWindow = be_app->WindowAt(i++)) {
 // do something, such as close theWindow
}

The preceding loop starts at window 0 in the window list and continues until the
last window in the list is reached.

A good use for the WindowAt() loop is to determine the frontmost window. The
BWindow member function IsFront() returns a bool (Boolean) value that indi-
cates whether a window is frontmost. If you set up a loop to cycle through each
open window and invoke IsFront() for each returned window, the frontmost
window will eventually be encountered:

BWindow *theWindow;
BWindow *frontWindow = NULL;
int32 i = 0;

while (theWindow = be_app->WindowAt(i++)) {
 if (theWindow->IsFront())
 frontWindow = theWindow;
}

In the preceding snippet, note that frontWindow is initialized to NULL. If no win-
dows are open when the loop runs, frontWindow will retain the value of NULL,
properly indicating that no window is frontmost.

Windows 105

Frontmost window routine

With the exception of main(), all the functions you’ve encountered to this point
have been part of the BeOS API—they’ve all been Be-defined member functions
of Be-defined classes. Your nontrivial projects will also include application-defined
member functions, either in classes you define from scratch or in classes you
derive from a Be-defined class. Here I provide an example of this second cate-
gory of application-defined routine. The MyHelloApplication class is derived
from the Be-defined BApplication class. This version of MyHelloApplication
adds a new application-defined routine to the class declaration:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 BWindow * GetFrontWindow();
};

The function implementation is familiar to you—it’s based on the previous snip-
pet that included a loop that repeatedly calls AtWindow():

BWindow * MyHelloApplication::GetFrontWindow()
{
 BWindow *theWindow;
 BWindow *frontWindow = NULL;
 int32 i = 0;

 while (theWindow = be_app->WindowAt(i++)) {
 if (theWindow->IsFront())
 frontWindow = theWindow;
 }
 return frontWindow;
}

When execution of GetFrontWindow() ends, the routine returns the BWindow
object that is the frontmost window. Before using the returned window, typecast it
to the BWindow-derived class that matches its actual type, as in:

MyHelloWindow *frontWindow;

frontWindow = (MyHelloWindow *)GetFrontWindow();

With access to the frontmost window attained, any BWindow member function can
be invoked to perform some action on the window. Here I call the BWindow mem-
ber function MoveBy() to make the frontmost window jump down and to the
right 100 pixels in each direction:

frontWindow->MoveBy(100, 100);

106 Chapter 4: Windows, Views, and Messages

Frontmost window example project

I’ve taken the preceding GetFrontWindow() routine and included it in a new ver-
sion of MyHelloWorld. To test out the function, I open three MyHelloWorld win-
dows, one directly on top of another. Then I call GetFrontWindow() and use the
returned BWindow reference to move the frontmost window off the other two. The
result appears in Figure 4-1.

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-mywd")
{
 MyHelloWindow *aWindow;
 BRect aRect;
 MyHelloWindow *frontWindow;

 aRect.Set(20, 30, 250, 100);
 aWindow = new MyHelloWindow(aRect);
 aWindow = new MyHelloWindow(aRect);
 aWindow = new MyHelloWindow(aRect);

 frontWindow = (MyHelloWindow *)GetFrontWindow();
 if (frontWindow)
 frontWindow->MoveBy(100, 100);
}

Notice that before working with the returned window reference, I verify that it has
a non-NULL value. If no windows are open when GetFrontWindow() is invoked,
that routine returns NULL. In such a case, a call to a BWindow member function
such as MoveBy() will fail.

The MyHelloWindow class doesn’t define any of its own member functions—it
relies on BWindow-inherited functions. So in this example, I could have declared
frontWindow to be of type BWindow and omitted the typecasting of the returned
BWindow reference. This code would still work:

...
BWindow *frontWindow;

Figure 4-1. The result of running the FrontWindow program

Windows 107

...
frontWindow = GetFrontWindow();
 if (frontWindow)
 frontWindow->MoveBy(100, 100);
}

But instead of working with the returned reference as a BWindow object, I opted to
typecast it to a MyHelloWindow object. That’s a good habit to get into—the type
of window being accessed is then evident to anyone looking at the source code
listing. It also sets up the returned object so that it can invoke any BWindow-
derived class member function. A BWindow object knows about only BWindow
functions, so if I define a SpinWindow() member function in the MyHelloWindow
class and then attempt to call it without typecasting the GetFrontWindow()-
returned BWindow reference, the compiler will complain:

BWindow *frontWindow;

frontWindow = GetFrontWindow();
if (frontWindow)
 frontWindow->SpinWindow(); // compilation error at this line

The corrected version of the above snippet looks like this:

MyHelloWindow *frontWindow;

frontWindow = (MyHelloWindow *)GetFrontWindow();
if (frontWindow)
 frontWindow->SpinWindow(); // compiles just fine!

Windows and Data Members

Defining a GetFrontWindow() or some similar member function to locate a win-
dow is one way to access a window. If you have only one instance of any given
window class in your program, though, you should consider using a technique
that stores window references in data members in the application object.

Defining a window object data member in the application class

For each type of window in your application, you can add to the class definition a
private data member of the window class type. Consider a program that displays
two windows: an input window for entering a mathematical equation, and an out-
put window that displays a graph of the entered equation. If such a program
defines BWindow-derived classes named EquationWindow and GraphWindow, the
BApplication-derived class could include two data members. As shown below,
Be convention uses a lowercase f as the first character of a data member name:

class MathApp : public BApplication {

 public:
 MathApp();

108 Chapter 4: Windows, Views, and Messages

 ...
 private:
 EquationWindow *fEquationWindow;
 GraphWindow *fGraphWindow;
};

For the MyHelloWorld project, the MyHelloApplication class is defined as:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();

 private:
 MyHelloWindow *fMyWindow;
};

Storing a window object in the data member

In past examples, I created an instance of a window by declaring a local window
variable in the application constructor, then using that variable in a call to the win-
dow’s class constructor:

MyHelloWindow *aWindow;
...
aWindow = new MyHelloWindow(aRect);

With the new technique, there’s no need to use a local variable. Instead, assign the
object returned by the window constructor to the window data member. The new
version of the MyHelloApplication class defines an fMyWindow data member,
so the result would be:

fMyWindow = new MyHelloWindow(aRect);

Here’s how the new version of the MyHelloApplication constructor looks:

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-mywd")
{
 BRect aRect;

 aRect.Set(20, 30, 250, 100);
 fMyWindow = new MyHelloWindow(aRect);
}

Once created, the new window can be accessed from any application member
function. For instance, to jump the window across part of the screen requires only
one statement:

fMyWindow->MoveBy(100, 100);

Windows 109

Window object data member example projects

This chapter’s MyHelloWorld project consists of the new version of the
MyHelloApplication class—the version that includes an fMyWindow data mem-
ber. The executable built from this project is indistinguishable from that built from
prior versions of the project; running the program results in the display of a single
window that holds the string “Hello, My World!”

The WindowTester project picks up where MyHelloWorld leaves off. Like MyHel-
loWorld, it includes an fMyWindow data member in the MyHelloApplication
class. The WindowTester version of the MyHelloApplication class also includes
a new application-defined member function:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 void DoWindowStuff();

 private:
 MyHelloWindow *fMyWindow;
};

After creating a window and assigning it to the fMyWindow data member, the
MyHelloApplication constructor invokes DoWindowStuff():

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-vnd.dps-mywd")
{
 BRect aRect;

 aRect.Set(20, 30, 250, 100);
 fMyWindow = new MyHelloWindow(aRect);

 DoWindowStuff();
}

I’ve implemented DoWindowStuff() such that it glides the program’s one win-
dow diagonally across the screen:

void MyHelloApplication::DoWindowStuff()
{
 int16 i;

 for (i=0; i<200; i++) {
 fMyWindow->MoveBy(1, 1);
 }
}

110 Chapter 4: Windows, Views, and Messages

Feel free to experiment by commenting out the code in
DoWindowStuff() and replacing it with code that has fMyWindow
invoke BWindow member functions other than MoveBy(). Refer to
the BWindow section of the Interface Kit chapter of the Be Book for
the details on such BWindow member functions as Close(), Hide(),
Show(), Minimize(), ResizeTo(), and SetTitle().

Views
A window always holds one or more views. While examples up to this point have
all displayed windows that include only a single view, real-world Be applications
make use of windows that often consist of a number of views. Because all draw-
ing must take place in a view, everything you see within a window appears in a
view. A scrollbar, button, picture, or text lies within a view. The topic of drawing
in views is significant enough that it warrants its own chapter—Chapter 5, Draw-
ing. In this chapter, the focus will be on how views are created and accessed.
Additionally, you’ll get an introduction to how a view responds to a message.

A view is capable of responding to a message sent from the Application Server to
a BWindow object and then on to the view. This messaging system is the principle
on which controls such as buttons work. The details of working with controls are
saved for Chapter 6, Controls and Messages, but this chapter ends with a discus-
sion of views and messages that will hold you over until you reach that chapter.

Accessing Views

You’ve seen that a window can be accessed by storing a reference to the window
in the BApplication-derived class (as demonstrated with the fMyWindow data
member) or via the BeOS API (through use of the BApplication member func-
tion WindowAt()). A similar situation exists for accessing a view.

Views and data members

Just as a reference to a window can be stored in an application class data mem-
ber, a reference to a view can be stored in a window class data member. The
MyHelloWorld project defines a single view class named MyHelloView that is
used with the project’s single window class, the MyHelloWindow class. Here I’ll
add a MyHelloView reference data member to the MyHelloWindow class:

class MyHelloWindow : public BWindow {

 public:

Views 111

 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();

 private:
 MyHelloView *fMyView;
};

Using this new technique, a view can be added to a new window in the win-
dow’s constructor, much as you’ve seen in past examples. The MyHelloWindow
constructor creates a new view, and a call to the BWindow member function
AddChild() makes the view a child of the window:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 Show();
}

The window’s view can now be easily accessed and manipulated from any
MyHelloWindow member function.

View data member example projects

This chapter’s NewMyHelloWorld project includes the new versions of the
MyHelloWindow class and the MyHelloWindow constructor—the versions devel-
oped above. Once again, performing a build on the project results in an execut-
able that displays a single “Hello, My World!” window. This is as expected. Using a
data member to keep track of the window’s one view simply sets up the window
for easy access to the view—it doesn’t change how the window or view behaves.

The ViewDataMember project serves as an example of view access via a data
member—the fMyView data member that was just added to the NewMyHel-
loWorld project. Here’s how the ViewDataMember project defines the
MyHelloWindow class:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 void SetHelloViewFont(BFont newFont, int32 newSize);

 private:
 MyHelloView *fMyView;
};

112 Chapter 4: Windows, Views, and Messages

The difference between this project and the previous version is that this project
uses the newly added SetHelloViewFont() member function to set the type and
size of the font used in a view. In particular, the project calls this routine to set the
characteristics of the font used in the MyHelloView view that the fMyView data
member references. Here’s what the SetHelloViewFont() implementation looks
like:

void MyHelloWindow::SetHelloViewFont(BFont newFont, int32 newSize)
{
 fMyView->SetFont(&newFont);
 fMyView->SetFontSize(newSize);
}

SetFont() and SetFontSize() are BView member functions with which you are
familiar—they’re both invoked from the MyHelloView AttachedToWindow()
function, and were introduced in Chapter 2, BeIDE Projects.

To change a view’s font, SetHelloViewFont() is invoked by a MyHelloWindow
object. To demonstrate its use, I chose to include the call in the MyHelloWindow
constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 BFont theFont = be_plain_font;
 int32 theSize = 12;
 SetHelloViewFont(theFont, theSize);

 Show();
}

The call to SetHelloViewFont() results in the about-to-be shown window hav-
ing text characteristics that include a font type of plain and a font size of 12.
Figure 4-2 shows the results of creating a new window. While
SetHelloViewFont() is a trivial routine, it does the job of demonstrating view
access and the fact that characteristics of a view can be changed at any time dur-
ing a program’s execution.

Figure 4-2. The ViewDataMember window displays text in a 12-point plain font

Views 113

Accessing a view using FindView()

When a view is created, one of the arguments passed to the view constructor is a
string that represents the view’s name:

fMyView = new MyHelloView(frame, "MyHelloView");

The MyHelloView class constructor invokes the BView constructor to take care of
the creation of the view. When it does that, it in turn passes on the string as the
second argument, as done here:

MyHelloView::MyHelloView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

If your code provides each view with a unique name, access to any particular
view can be easily gained by using the BWindow member function FindView().
For instance, in this next snippet a pointer to the previously created view with the
name “MyHelloView” is being obtained. Assume that the following code is called

A More Practical Use For SetHelloViewFont()
Attaching a view to a window by calling AddChild() automatically invokes
the view’s AttachedToWindow() routine to take care of any final view setup.
Recall that the MyHelloView class overrides this BView member function and
invokes SetFont() and SetFontSize() in the AttachedToWindow() imple-
mentation:

void MyHelloView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);
}

So it turns out that in the above version of the MyHelloWindow constructor,
the view’s font information is set twice, almost in succession. The result is that
when the view is displayed, the last calls to SetFont() and SetFontSize()
are used when drawing in the view, as shown in Figure 4-2.

Because this example project has very few member functions (intentionally, to
keep it easily readable), I’m limited in where I can place a call to
SetHelloViewFont(). In a larger project, a call to SetHelloViewFont()
might be invoked from the code that responds to, say, a button click or a menu
item selection. After reading Chapter 6 and Chapter 7, Menus, you’ll be able to
easily try out one of these more practical uses for a routine such as
SetHelloViewFont().

114 Chapter 4: Windows, Views, and Messages

from within a MyHelloApplication member function, and that a window has
already been created and a reference to it stored in the MyHelloApplication
data member fMainWindow:

MyHelloView *theView;

theView = (MyHelloView *)fMainWindow->FindView("MyHelloView");

FindView() returns a BView object. The above snippet typecasts this BView
object to one that matches the exact type of view being referenced—a
MyHelloView view.

FindView() example project

The FindByName project does just that—it finds a view using a view name. This
project is another version of this chapter’s MyHelloWorld. Here I keep track of the
program’s one window using a data member in the MyHelloApplication class. A
reference to the program’s one view isn’t, however, stored in a data member in the
MyHelloWindow class. Instead, the view is accessed from the window using a call
to FindView(). Here’s the MyHelloWindow constructor that creates a view named
“MyHelloView” and adds it to a new window:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 MyHelloView *aView;

 frame.OffsetTo(B_ORIGIN);
 aView = new MyHelloView(frame, "MyHelloView");
 AddChild(aView);

 Show();
}

The MyHelloWindow member function QuitRequested() has remained
unchanged since its introduction in Chapter 1. All it did was post a B_QUIT_
REQUESTED and return true. I’ll change that by adding a chunk of code.
Figure 4-3 shows how the program’s window looks just before closing.

bool MyHelloWindow::QuitRequested()
{
 MyHelloView *aView;
 bigtime_t microseconds = 1000000;

 aView = (MyHelloView *)FindView("MyHelloView");
 if (aView) {
 aView->MovePenTo(BPoint(20, 60));
 aView->DrawString("Quitting...");
 aView->Invalidate();
 }

Views 115

 snooze(microseconds);

 be_app->PostMessage(B_QUIT_REQUESTED);
 return(true);
}

The new version of QuitRequested() now does the following:

• Accesses the view named “MyHelloView.”

• Calls a few BView member functions to draw a string and update the view.

• Pauses for one second.

• Closes the window and quits.

Several lines of code are worthy of further discussion.

The “Accessing a view using FindView()” section in this chapter demonstrates the
use of FindView() from an existing window object:

MyHelloView *theView;

theView = (MyHelloView *)fMainWindow->FindView("MyHelloView");

This latest example demonstrates the use of FindView() from within a window
member function. The specific object FindView() acts on is the one invoking
QuitRequested(), so unlike the above example, here no MyHelloWindow object
variable precedes the call to FindView():

MyHelloView *aView;

aView = (MyHelloView *)FindView("MyHelloView");

With a reference to the MyHelloView object, QuitRequested() can invoke any
BView member function. MovePenTo() and DrawString() are functions you’ve
seen before—they also appear in the MyHelloView member function Draw().
Invalidate() is new to you. When a view’s contents are altered—as they are
here with the writing of the string “Quitting...”—the view needs to be updated
before the changes become visible onscreen. If the changes are made while the
view’s window is hidden, then the subsequent act of showing that window brings

Figure 4-3. The FindByName program adds text to a window before closing it

116 Chapter 4: Windows, Views, and Messages

on the update. Here, with the window showing and frontmost, no update auto-
matically occurs after the call to DrawString(). The BView member function
Invalidate() tells the system that the current contents of the view are no longer
valid and require updating. When the system receives this update message, it
immediately obliges the view by redrawing it.

Finally, the snooze() function is new to you. The BeOS API includes a number of
global, or nonmember, functions—snooze() is one of them. A global function
isn’t associated with any class or object, so once the BApplication-defined object
is created in main(), it can be called from any point in a program. The snooze()
function requires one argument, the number of microseconds for which execution
should pause. The parameter is of type bigtime_t, which is a typedef equiva-
lent to the int64 datatype. Here, the first call to snooze() pauses execution for
one million microseconds, or one second, while the second call pauses execution
for fifty thousand microseconds, or one-twentieth of one second:

bigtime_t microseconds = 1000000;

snooze(microseconds);
snooze(50000);

In this book I’ll make occasional use of a few global functions. In
particular, you’ll see calls to snooze() and beep() in several exam-
ples. You’ll quickly recognize a function as being global because it
starts with a lowercase character. A global function is associated with
one of the Be kits, so you’ll find it documented in the Global Func-
tions section of the appropriate kit chapter in the Be Book. For
instance, snooze() puts a thread to sleep, so it’s documented in
the thread-related chapter of the Be Book, the Kernel Kit chapter.
The beep() global function plays the system beep. Sound (and thus
the beep() function) is a topic covered in the Media Kit chapter of
the Be Book.

View Hierarchy

A window can hold any number of views. When a window holds more than one,
the views fall into a hierarchy.

Top view

Every window contains at least one view, even if none is explicitly created and
added with calls to AddChild(). That’s because upon creation, a window is
always automatically given a top view—a view that occupies the entire content
area of the window. Even if the window is resized, the top view occupies the

Views 117

entire window content. A top view exists only to serve as an organizer, or con-
tainer, of other views. The other views are added by the application. Such an
application-added view maps out a window area that has its own drawing charac-
teristics (such as font type and line width), is capable of being drawn to, and is
able to respond to messages.

Application-added views and the view hierarchy

Each view you add to the window falls into a window view hierarchy. Any view
that is added directly to the window (via a call to the BWindow member function
AddChild()) falls into the hierarchy just below the top view. Adding a few views
to a window in this way could result in a window and view hierarchy like those
shown in Figure 4-4.

When a view is added to a window, there is no visible sign that the
view exists. So in Figure 4-4, the window’s views—including the top
view—are outlined and are named. The added views have also been
given a light gray background. While the view framing, shading, and
text have been added for clarity, you could in fact easily create a
window that highlighted its views in this way. You already know
how to add text to a view using DrawString(). Later in this chap-
ter you’ll see how to draw a rectangle in a view. And in Chapter 5
you’ll see how to change the background color of a view.

The views you add to a window don’t have to exist on the same hierarchical level;
they can be nested one inside another. Figure 4-5 shows another window with
three views added to the top view. Here, one view has been placed inside
another.

Figure 4-4. A window with three views added to it and that window’s view hierarchy

Top
View

View1 View3View2

118 Chapter 4: Windows, Views, and Messages

To place a view within another, you add the view to the container view rather
than to the window. Just as the BWindow class has an AddChild() member func-
tion, so does the BView class. This next snippet shows a window constructor that
creates two views. The first is 200 pixels by 300 pixels in size, and is added to the
window. The second 150 pixels by 150 pixels, and is added to the first view.

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "Nested Views", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 BRect viewFrame;
 MyHelloView *view1;
 MyHelloView *view2;

 viewFrame.Set(30, 30, 230, 330);
 view1 = new MyHelloView(viewFrame, "MyFirstView");
 AddChild(view1);

 viewFrame.Set(10, 10, 160, 160);
 view2 = new MyHelloView(viewFrame, "MySecondView");
 view1->AddChild(view2);

 Show();
}

Multiple views example project

Later in this chapter you’ll see a few example projects that place two views of type
MyHelloView in a window. Having the views be the same type isn’t required, of
course—they can be different class types. The TwoViewClasses project defines a
view named MyDrawView and adds one such view to a window, along with an
instance of the MyHelloView class with which you’re already familiar. Figure 4-6
shows the window that results from running the TwoViewClasses program.

Figure 4-5. A window with nested views added to it and that window’s view hierarchy

Top
View

View1 View3

View2

Views 119

In keeping with the informal convention of placing the code for a class declara-
tion in its own header file and the code for the implementation of the member
functions of that class in its own source code file, the TwoViewClasses project
now has a new source code file added to it. Figure 4-7 shows the project window
for this project.

I haven’t shown a project window since Chapter 2, and won’t show
one again. I did it here to lend emphasis to the way in which
projects are set up throughout this book (and by many other Be pro-
grammers as well).

I created the new class by first copying the MyHelloView.h and MyHelloView.cpp
files and renaming them to MyDrawView.h and MyDrawView.cpp, respectively. My
intent here is to demonstrate that a project can derive any number of classes from
the BView class and readily mix them in any one window. So I’ll only make a cou-
ple of trivial changes to the copied MyHelloView class to make it evident that this
is a new class. In your own project, the BView-derived classes you define may be
very different from one another.

Figure 4-6. A window that holds two different types of views

Figure 4-7. The TwoViewClasses project window shows the addition of a new source code file

120 Chapter 4: Windows, Views, and Messages

With the exception of the class name and the name of the constructor, the
MyDrawView class declaration is identical to the MyHelloView class declaration.
From the MyDrawView.h file, here’s that declaration:

class MyDrawView : public BView {

public:
 MyDrawView(BRect frame, char *name);
virtual void AttachedToWindow();
virtual void Draw(BRect updateRect);
};

Like the MyHelloView constructor, the MyDrawView constructor is empty:

MyDrawView::MyDrawView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

The MyDrawView member function AttachedToWindow() sets up the view’s font
and font size. Whereas the MyHelloView specified a 12-point font, the
MyDrawView specifies a 24-point font:

void MyHelloView::AttachedToWindow()
{
 SetFont(be_bold_font);
 SetFontSize(24);
}

Except for the text drawn to the view, the MyDrawView member function Draw()
looks like the MyHelloView version of this function:

void MyDrawView::Draw(BRect)
{
 BRect frame = Bounds();
 StrokeRect(frame);

 MovePenTo(BPoint(10, 30));
 DrawString("This is a MyDrawView view");
}

To create a further contrast in the way the two views display text, I turned to the
MyHelloView and made one minor modification. In the AttachedToWindow()
member function of that class, I changed the font set by SetFont() from be_
bold_font to be_plain_font. Refer to Figure 4-6 to see the difference in text
appearances in the two views.

In order for a window to be able to reference both of the views it will hold, a new
data member has been added to the MyHelloWindow class. In the MyHelloWin-
dow.h header file, you’ll find the addition of a MyDrawView data member named
fMyDrawView:

Views 121

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();

 private:
 MyHelloView *fMyView;
 MyDrawView *fMyDrawView;
};

In the past the MyHelloWindow constructor created and added a single view to
itself. Now the constructor adds a second view:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.Set(0, 0, 200, 20);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 frame.Set(0, 21, 350, 300);
 fMyDrawView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyDrawView);

 Show();
}

Both views have been added directly to the window (to the top view), rather than
to another view, so both views are on the same level in the window’s view hierar-
chy. The Draw() function of each view type includes code to frame the view, so
you can easily see the results of any view size changes you might make to the
views here in the MyHelloWindow constructor.

Coordinate System

In order to specify where a window is to be placed on the screen and where a
view is to be placed within a window, a coordinate system is required.

Global coordinate system

To allow a programmer to reference any point on the computer screen, Be defines
a coordinate system that gives every pixel a pair of values: one for the pixel’s dis-
tance from the left edge of the screen and one for the pixel’s distance from the top
of the screen. Figure 4-8 points out a few pixels and their corresponding coordi-
nate pairs.

For display devices, the concept of fractional pixels doesn’t apply. Consider a win-
dow that is to have its top left corner appear 100 pixels from the left edge of the
screen and 50 pixels from the top of the screen. This point is specified as (100.0,

122 Chapter 4: Windows, Views, and Messages

50.0). If the point (100.1, 49.9) is used instead, the result is the same—the win-
dow’s corner ends up 100 pixels from the left and 50 pixels from the top of the
screen.

The above scenario begs the question: if the coordinates of pixel locations are sim-
ply rounded to integral values, why use floating points at all? The answer lies in
the current state of output devices: most printers have high resolutions. On such a
device, one coordinate unit doesn’t map to one printed dot. A coordinate unit is
always 1/72 of an inch. If a printer has a resolution of 72 dots per inch by 72 dots
per inch (72 dpi × 72 dpi), then one coordinate unit would in fact translate to one
printed dot. Typically printers have much higher resolutions, such as 300 dpi or
600 dpi. If a program specifies that a horizontal line be given a height of 1.3 units,
then that line will occupy one row of pixels on the screen (the fractional part of
the line height is rounded off). When that same line is sent to a printer with a res-
olution of 600 dpi, however, that printer will print the line with a height of 11
rows. This value comes from the fact that one coordinate unit translates to 8.33
dots (that’s 1/72 of 600). Here there is no rounding of the fractional coordinate
unit, so 1.3 coordinate units is left at 1.3 units (rather than 1 unit) and translates to
11 dots (1.3 times 8.33 is 10.83). Whether the line is viewed on the monitor or on
hardcopy, it will have roughly the same look—it will be about 1/72 inch high. It’s
just that the rows of dots on a printer are denser than the rows of pixels on the
monitor.

Window coordinate system

When a program places a view in a window, it does so relative to the window,
not to the screen. That is, regardless of where a window is positioned on the
screen when the view is added, the view ends up in the same location within the
content area of the window. This is possible because a window has its own

Figure 4-8. The global coordinate system maps the screen to a two-dimensional graph

x-axis

y-axis

(0.0, 0.0) (100.0, 0.0)

(150.0, 50.0)

(0.0, 100.0)

Views 123

coordinate system—one that’s independent of the global screen coordinate sys-
tem. The type of system is the same as the global system (floating point values that
get larger as you move right and down)—but the origin is different. The origin of
a window’s coordinate system is the top left corner of the window’s content area.

When a program adds a view to a window, the view’s boundary rectangle values
are stated in terms of the window’s coordinate system. Consider the following win-
dow constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 MyHelloView *aView;
 BRect viewFrame(20.0, 30.0, 120.0, 130.0);

 aView = new MyHelloView(viewFrame, "MyHelloView");
 AddChild(aView);

 Show();
}

The coordinate systems for the window and the view are different. The window’s
size and screen placement, which are established by the BRect variable frame
that is passed to the constructor, are expressed in the global coordinate system.
The view’s size and placement, established by the local BRect variable
viewFrame, are expressed in the window coordinate system. Regardless of where
the window is placed, the view aView will have its top left corner at point (20.0,
30.0) within the window.

In all previous examples, the arguments to a BRect constructor, or
to the BRect member function Set(), were integer values, such as
(20, 30, 120, 130). Since none of the examples were concerned with
high precision printouts, that technique worked fine. It also may
have been comforting to you if you come from a Mac or Windows
programming background, where rectangle boundaries use integral
values. Now that we’ve seen the true nature of the BeOS coordinate
system, however, we’ll start—and continue—to use floating point
values.

View coordinate system

When a program draws in a view, it draws relative to the view, not to the win-
dow or the screen. It doesn’t matter where a window is onscreen, or where a view
is within a window—the drawing will take place using the view’s own coordinate
system. Like the global and window coordinate systems, the view coordinate sys-
tem is one of floating point coordinate pairs that increase in value from left to right

124 Chapter 4: Windows, Views, and Messages

and from top to bottom. The origin is located at the top left corner of the view.
Consider this version of the MyHelloView member function Draw():

void MyHelloView::Draw(BRect)
{
 MovePenTo(BPoint(10.0, 30.0));
 DrawString("Hello, My World!");
}

The arguments in the call to the BView member function MovePenTo() are local
to the view’s coordinate system. Regardless of where the view is located within its
window, text drawing will start 10 units in from the left edge of the view and 30
units down from the top edge of the view.

Figure 4-9 highlights the fact that there are three separate coordinate systems at
work in a program that displays a window that holds a view.

Coordinate system example projects

To determine the size of a view in its own coordinate system (whether the view
resides in a window or within another view), begin by invoking the BView mem-
ber function Bounds(). In this chapter’s OneView project, a call to this function
has been added to the MyHelloView member function Draw(). One other BView
member function call has been added too—a call to StrokeRect(). This routine
draws a rectangle at the coordinates specified by the BRect argument passed to it:

void MyHelloView::Draw(BRect)
{
 BRect frame = Bounds();
 StrokeRect(frame);

Figure 4-9. The screen, windows, and views have their own coordinate systems

(0.0, 0.0)

(0.0, 0.0)

(0.0, 0.0)

Views 125

 MovePenTo(BPoint(10.0, 30.0));
 DrawString("Hello, My World!");
}

Since the rectangle returned by the Bounds() function call is relative to the view’s
own coordinate system, the left and top fields are always 0.0. The right and
bottom fields reveal the view’s width and height, respectively.

To find a view’s boundaries relative to the window or view it resides in, call the
BView member function Frame(). The rectangle returned by a call to Frame()
has left and top fields that indicate the view’s distance in and down from the
window or view it resides in.

The OneView project creates a single MyHelloView view and adds it to a win-
dow. These steps take place in the MyHelloWindow constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyHelloView(frame, "MyHelloView");

 AddChild(fMyView);
 Show();
}

Now that you know about the different coordinate systems, setting up the view
rectangle might make more sense to you. In the above snippet, the BRect parame-
ter frame holds the coordinates of the window. These coordinates directly define
the screen placement of the window and indirectly define the size of the window
(subtract frame.left from frame.right to get the window’s width, and sub-
tract frame.top from frame.bottom to get the window’s height). Calling the
BRect member function OffsetTo() with B_ORIGIN as the parameter shifts these
coordinates so that each of the frame.left and frame.top fields has a value of
0.0. The overall size of the frame rectangle itself, however, doesn’t change—it is
still the size of the window. It just no longer reflects the screen positioning of the
window. Next, the view that is to be added to the window is created. The view is
to be positioned in the window using the window’s coordinate system, so if the
view is to fit snugly in the window, the view must have its top left corner at the
window’s origin. The frame rectangle that was initially used to define the place-
ment and size of the window can now be used to define the placement and size
of the view that is to fill the window.

When the BWindow member function Show() is invoked from the window con-
structor, the window is drawn to the screen and the view’s Draw() function is
automatically called to update the view. When that happens, the view is out-
lined—the Draw() function draws a line around the perimeter of the view.
Figure 4-10 shows the result of creating a new window in the OneView project.

126 Chapter 4: Windows, Views, and Messages

Because the window’s one view is exactly the size of the content area of the win-
dow, the entire content area gets a line drawn around it.

The OneSmallView project is very similar to the OneView project—both draw a
frame around the one view that resides in the program’s window. To demonstrate
that a view doesn’t have to occupy the entire content area of a window, the One-
SmallView project sets up the view’s boundary rectangle to be smaller than the
window. This is done in the MyHelloWindow constructor:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.Set(100.0, 80.0, 250.0, 120.0);
 fMyView = new MyHelloView(frame, "MyHelloView");
 AddChild(fMyView);

 Show();
}

Here the line that offsets the window boundary rectangle (the BRect parameter
frame) has been replaced by one that calls the BRect member function Set() to
reset all the values of the frame rectangle. Figure 4-11 shows the resulting win-
dow. Note that a view is aware of its own boundaries, so that when you try to
draw (or write) beyond a view edge, the result is truncated.

Messaging
As discussed in Chapter 1, the Application Server communicates with (serves) an
application by making the program aware of user actions. This communication is
done in the form of system messages sent from the server to the application. Mes-

Figure 4-10. Drawing a rectangle around the OneView window’s view

Figure 4-11. When a view is too small for the window content

Messaging 127

sages are received by a window and, often, passed on to a view in that window.
The BeOS shoulders most of the responsibility of this communication between the
Application Server, windows, and views. Your application (typically a view in a
window in your application) is responsible for performing some specific action in
response to a message.

System Messages

A system message is sent from the Application Server to a BLooper object. Both
the BApplication and BWindow classes are derived from BLooper, so objects of
these two classes (or objects of classes derived from these two classes) can receive
messages. The Application server is responsible for directing a system message to
the appropriate type of object.

The message loop of a program’s BWindow-derived object receives messages that
hold information about user actions. If the user typed a character, that character
may need to be entered into a window. If the user clicked a mouse button, that
click may have been made while the cursor was over a button in the window. The
system message types of these two user actions are B_KEY_DOWN and B_MOUSE_
DOWN. Such BWindow-directed system messages are referred to as interface mes-
sages.

The message loop of a program’s BApplication-derived object receives mes-
sages that pertain to the application itself (as opposed to messages that pertain to
a window or view, which are sent to a BWindow-derived object). If the user
chooses the About menu item present in most programs, the program dispatches
to the application object a message of type B_ABOUT_REQUESTED. Such
BApplication-directed system messages are referred to as application messages.

See the Application Kit chapter of the Be Book for a description of
all of the application messages, and the Interface Kit chapter for a
description of all the interface messages.

System message dispatching

When a system message reaches a looper object (such as the application object or
a window object), that object handles, or dispatches, the message by automati-
cally invoking a virtual hook function. Such a function is declared virtual so that
your own derived classes can override it in order to reimplement it to match your
program’s specific needs. In that sense, you’re “hooking” your own code onto the
system code.

128 Chapter 4: Windows, Views, and Messages

Each system message has a corresponding hook function. For the three system
messages mentioned above (B_ABOUT_REQUESTED, B_KEY_DOWN, and B_MOUSE_
DOWN), those functions are AboutRequested(), KeyDown(), and MouseDown().
The application object itself handles a B_ABOUT_REQUESTED message by calling
the BApplication member function AboutRequested(). A window object, on
the other hand, passes a B_KEY_DOWN or B_MOUSE_DOWN message on to the partic-
ular view object to which the message pertains. This view object then invokes the
BView member function KeyDown() or MouseDown() to handle the message.

Types of hook functions

For some system messages, the hook function defined by the Be class takes care
of all the work suggested by the message. For instance, a click on a window’s
zoom button results in a B_ZOOM message being sent to the affected window. The
receiving of this message automatically brings about the execution of the BWindow
member function Zoom(). This hook function is fully implemented, meaning that
you need to add no code to your project in order to support a click in a win-
dow’s zoom button.

All hook functions are declared virtual, so your code can override even fully
implemented ones. Unless your application needs to perform some nonstandard
action in response to the message, though, there’s no need to do so.

For other system messages, the hook function is implemented in such a way that
the most common response to the message is handled. A program may override
this type of hook function and reimplement it in such a way that the new version
handles application-specific needs. This new application-defined version of the
hook function may also call the original Be-defined BView version of the routine
in order to incorporate the default actions of that BView version. An example of
this type of hook function is ScreenChanged(), which is invoked in response to
a B_SCREEN_CHANGED message. When the user changes the screen (perhaps by
altering the monitor resolution), the application may need to make special adjust-
ments to an open window. After doing that, the application-defined version of
ScreenChanged() should invoke the BView-defined version of this routine so
that the standard screen-changing code that’s been supplied by Be can execute
too.

Finally, for some system messages, the hook function implementation is left to the
application. If an application is to respond to user actions that generate messages
of types such as B_KEY_DOWN and B_MOUSE_DOWN, that application needs to over-
ride BView hook functions such as KeyDown() and MouseDown().

Messaging 129

Interface messages

A system message directed at the application object is an application message,
while a system message directed at a window object is an interface message.
Responding to user actions is of great importance to a user-friendly application, so
the remainder of this chapter is dedicated to illustrating how a project goes about
doing this. In particular, I’ll discuss the handling of two of the interface messages
(B_KEY_DOWN and B_MOUSE_DOWN). Summarized below are several of the inter-
face messages; refer to the Interface Kit chapter of the Be Book for a description
of each of the 18 message types.

B_KEY_DOWN
Goes to the active window in response to the user pressing a character key.
The recipient window invokes the BView hook function KeyDown() of the
affected view. The affected view is typically one that accepts text entry, such
as a view of the yet-to-be-discussed BTextControl or BTextView classes. An
example of handling a B_KEY_DOWN message is presented later in this chapter.

B_KEY_UP
Is sent to the active window when the user releases a pressed character key.
The recipient window invokes the BView hook function KeyUp() of the
affected view. Typically, a program responds to a B_KEY_DOWN message and
ignores the B_KEY_UP message that follows. In other words, the program
doesn’t override the BView hook function KeyUp().

B_MOUSE_DOWN
Is sent to the window over which the cursor was located at the time of the
mouse button click. The window that receives the message calls the BView
hook function MouseDown() of the view the cursor was over at the time of
the mouse button click.

B_MOUSE_UP
Reaches the window that was affected by a B_MOUSE_DOWN message when the
user releases a pressed mouse button. The MouseDown() hook function that
executes in response to a B_MOUSE_DOWN message often sufficiently handles a
mouse button click, so a B_MOUSE_UP message is often ignored by a pro-
gram. That is, the program doesn’t override the BView hook function
MouseUp().

B_MOUSE_MOVED
Is sent to a window when the user moves the cursor over the window. As the
user drags the mouse, repeated B_MOUSE_MOVED messages are issued by the
Application Server. As the cursor moves over one window to another, the win-
dow to which the messages are sent changes. When the mouse is moved over
the desktop rather than a window, a B_MOUSE_MOVED message is sent to the
Desktop window of the Tracker.

130 Chapter 4: Windows, Views, and Messages

Mouse Clicks and Views

When a window receives a B_MOUSE_DOWN message from the Application Server,
the window object (without help from you) determines which of its views should
respond. It is that view’s MouseDown() hook function that is then invoked.

The ViewsMouseMessages project includes a MouseDown() routine with the
MyHelloView class in order to make the program “mouse-click aware.” The
ViewsMouseMessages program displays a single window that holds two framed
MyHelloView views. Clicking the mouse while the cursor is over either view
results in the playing of the system beep.

The mechanism for responding to a mouse click has already been present in every
example project in this book, so there’s very little new code in the ViewsMouse-
Messages project. The ViewsMouseMessages program, and every other program
you’ve seen in this book, works as follows: when the user clicks the mouse but-
ton while the cursor is over a window, the Application Server sends a B_MOUSE_
DOWN message to the affected window, causing it to invoke the affected view’s
MouseDown() hook function. The MyHelloView class is derived from the BView
class, and the BView class defines its version of MouseDown() as an empty func-
tion. So unless the MyHelloView class overrides MouseDown(), it inherits this “do-
nothing” routine. In all previous examples, a mouse button click while the cursor
was over a view resulted in the execution of this empty routine—so effectively the
mouse button click was ignored. The ViewsMouseMessages project overrides
MouseDown() so that a mouse button click with the cursor over a view now
results in something happening. Here’s the latest version of the MyHelloView
class definition, with the addition of the MouseDown() declaration:

class MyHelloView : public BView {

 public:
 MyHelloView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
 virtual void MouseDown(BPoint point);
};

The one MouseDown() parameter is a BPoint that is passed to the routine by the
Application Server. This point parameter holds the location of the cursor at the
time the mouse button was clicked. The values of the point are in the view’s coor-
dinate system. For example, if the cursor was over the very top left corner of the
view at the time of the mouse click, the point’s coordinates would be close to (0.0,
0.0). In other words, both point.x and point.y would have a value close to 0.0.

To verify that the B_MOUSE_DOWN message has worked its way to the new version
of MouseDown(), the implementation of MouseDown() sounds the system beep:

Messaging 131

void MyHelloView::MouseDown(BPoint point)
{
 beep();
}

Recall that beep() is a global function that, like the snooze() routine covered
earlier in this chapter, can be called from any point in your project’s source code.

Key Presses and Views

In response to a B_MOUSE_DOWN message, a window object invokes the
MouseDown() function of the affected view. For the window object, determining
which view is involved is simple—it chooses whichever view object is under the
cursor at the time of the mouse button click. This same test isn’t made by the win-
dow in response to a B_KEY_DOWN message. That’s because the location of the
cursor when a key is pressed is generally insignificant. The scheme used to deter-
mine which view’s KeyDown() hook function to invoke involves a focus view.

Focus view

A program can make any view the focus view by invoking that view’s
MakeFocus() function. For a view that accepts typed input (such as BText-
Control or a BTextView view), the call is made implicitly when the user clicks in
the view to activate the insertion bar. Any view, however, can be made the focus
view by explicitly calling MakeFocus(). Here a click of the mouse button while
the cursor is over a view of type MyHelloView makes that view the focus view:

void MyHelloView::MouseDown(BPoint point)
{
 MakeFocus();
}

Now, when a key is pressed, the KeyDown() hook function of the last clicked-on
view of type MyHelloView will automatically execute.

Because a MyHelloView view doesn’t accept keyboard input, there
is no obvious reason to make a view of this type the focus view. We
haven’t worked with many view types, so the above example must
suffice here. If you’re more comfortable having a reason for making
a MyHelloView accept keyboard input, consider this rather con-
trived scenario. You want the user to click on a view of type
MyHelloView to make it active. Then you want the user to type any
character and have the view echo that character back—perhaps in a
large, bold font. Including the above MouseDown() routine in a
project suffices to make the view the focus view when clicked on.
Now a MyHelloView KeyDown() routine can be written to examine
the typed character, clear the view, and draw the typed character.

132 Chapter 4: Windows, Views, and Messages

KeyDown() example project

The ViewsKeyMessages project adds to the ViewsMouseMessages project to create
a program that responds to both mouse button clicks and key presses. Once again,
a mouse button click while the cursor is over a view results in the sounding of the
system beep. Additionally, ViewsKeyMessages beeps twice if the Return key is
pressed and three times if the 0 (zero) key is pressed.

To allow a MyHelloView view to respond to a press of a key, the BView hook
function KeyDown() needs to be overridden:

class MyHelloView : public BView {

 public:
 MyHelloView(BRect frame, char *name);
 virtual void AttachedToWindow();
 virtual void Draw(BRect updateRect);
 virtual void MouseDown(BPoint point);
 virtual void KeyDown(const char *bytes, int32 numBytes);
};

The first KeyDown() parameter is an array that encodes the typed character along
with any modifier keys (such as the Shift key) that were down at the time of the
key press. The second parameter tells how many bytes are in the array that is the
first parameter. As with all hook functions, the values of these parameters are filled
in by the system and are available in your implementation of the hook function
should they be of use.

The KeyDown() routine responds to two key presses: the Return key and the 0
(zero) key. Pressing the Return key plays the system beep sound twice, while
pressing the 0 key plays the sound three times:

void MyHelloView::KeyDown(const char *bytes, int32 numBytes)
{
 bigtime_t microseconds = 1000000;

 switch (*bytes) {

 case B_RETURN:
 beep();
 snooze(microseconds);
 beep();
 break;

 case '0':
 beep();
 snooze(microseconds);
 beep();
 snooze(microseconds);
 beep();
 break;

Messaging 133

 default:
 break;
 }
}

There are a number of Be-defined constants you can test bytes against; B_RETURN
is one of them. The others are: B_BACKSPACE, B_LEFT_ARROW, B_INSERT, B_
ENTER, B_RIGHT_ARROW, B_DELETE, B_UP_ARROW, B_HOME, B_SPACE, B_DOWN_
ARROW, B_END, B_TAB, B_PAGE_UP, B_ESCAPE, B_FUNCTION_KEY, and B_PAGE_
DOWN. For a key representing an alphanumeric character, just place the character
between single quotes, as shown above for the 0 (zero) character.

Notice that calls to the global function snooze() appear between calls to the glo-
bal function beep(). The beep() routine executes in its own thread, which means
as soon as the function starts, control returns to the caller. If successive, uninter-
rupted calls are made to beep(), the multiple playing of the system beep will
seem like a single sound.

Only the focus view responds to a key press, so the ViewsKeyMessages program
needs to make one of its two views the focus view. I’ve elected to do this in the
MyHelloView MouseDown() routine. When the user clicks on a view, that view
becomes the focus view:

void MyHelloView::MouseDown(BPoint point)
{
 beep();

 MakeFocus();
}

When the user then presses a key, the resulting B_KEY_DOWN message is directed
at that view. Since the views are derived from the BView class, rather than a class
that accepts keyboard input, a typed character won’t appear in the view. But the
view’s KeyDown() routine will still be called.

