
359

Chapter 10

In this chapter:
• Files and the Storage

Kit
• Using Standard Open

and Save Panels
• Onward

10
10.Files

Many utility programs don’t involve file handling, but almost all real-world, full-
featured applications do. Before your own best-selling Be application can be con-
sidered complete, it will no doubt need to have the capability to open files, save
files, or both. In this chapter, you’ll see how these file-handling techniques are
implemented. To open a file, your program will need to find it on disk; and to
save a file, your program will need to specify a location on disk. So before getting
into the actual manipulation of files, this chapter introduces you to the BeOS file
hierarchy.

Files and the Storage Kit
Up to this point, we’ve managed to avoid the Storage Kit. Now that we’re about to
work with persistent data, though, it’s time to dig into a number of the classes in
this useful kit. The classes of the Storage Kit allow you to write programs that rec-
ognize the hierarchy of files on disk, read from and write to files, and study or
change file attributes.

There are a number of Storage Kit classes that aid in working with files, including,
unsurprisingly, the BFile class. But Be also tips its hat to Unix programmers by
supporting standard POSIX file functions such as open(), close(), read(), and
write(). If you have a Unix programming background, you’ll feel right at home
using POSIX functions to implement file-handling tasks such as saving a docu-
ment’s data to a file. If you aren’t comfortable with Unix, you probably aren’t
familiar with POSIX. That’s okay, because the Storage Kit also defines classes (such
as BFile) that let you work with files outside the realm of POSIX. In this chapter
I’ll cover file manipulation using both techniques.

360 Chapter 10: Files

POSIX, or Portable Operating System Interface for Unix, is a standard
developed so that buyers (particularly the U.S. government) could be
assured of purchasing programs that ran on a variety of systems and
configurations. A POSIX-compliant program is written to a strict stan-
dard so that it is easily ported. It’s also designed to run on any
POSIX-compliant operating system, which includes most variants of
Unix.

File Organization

The BeOS, like the Mac OS, Windows, and Unix, organizes files hierarchically.
Files, and the directories (or folders) that hold files, are organized in a hierarchy or
tree. Each directory may hold files, other directories, or both. Each item (file or
directory) has a single parent directory—a directory in which the item resides. The
parent directory of an item may, of course, have a parent of its own. Thus the cre-
ation of a hierarchy. The common ancestor for all the files and directories in the
hierarchy is a directory referred to as the root directory.

A single file, regardless of its place in the hierarchy, is considered to have both an
entry and a node. In short, a file’s entry is its pathname, or location in the hierar-
chy, while the file’s node is the actual data that makes up the file. These two parts
of a file serve different purposes, and one part can be manipulated without affect-
ing the other part. For instance, a file’s entry (its pathname) can be altered with-
out changing the file’s node (its contents, or data).

Entries

Searching, opening, and saving a file all involve an entry. Your program needs to
know, or establish, the location of a file before it can work with it. The entry_
ref data structure is used to keep track of the entry, or entries, your program is to
work with. A Be program relies on an object of the BEntry class if it needs to
manipulate an entry. In this chapter, you’ll see examples that use both the entry_
ref data structure and the BEntry class.

Nodes

To manipulate a file’s contents—something done during reading and writing a
file—a program works with the file’s node. For this purpose, the BeOS defines a
node_ref data structure and a BNode class. The BFile class is derived from
BNode, and it is the BFile class that I’ll use in this chapter’s examples.

Using Standard Open and Save Panels 361

Using Standard Open and Save Panels
An operating system with a graphical user interface typically provides standard-
ized means for opening and saving files. That maintains consistency from pro-
gram to program, and allows the user to work intuitively with files regardless of
the program being used. The BeOS is no exception. In Figure 10-1, you see the
standard Save file panel. The Open file panel looks similar to the Save file panel,
with the primary difference being the Open file panel’s omission of the text view
used in the Save file panel to provide a name for a file.

Using BFilePanel to Create a Panel

The Storage Kit defines a single BFilePanel class that’s used to create both a
Save file panel object and an Open file panel object. The BFilePanel construc-
tor, shown below, is a bit scary-looking, but as you’ll soon see, most of the argu-
ments can be ignored and left at their default values:

BFilePanel(file_panel_mode mode = B_OPEN_PANEL,
 BMessenger *target = NULL,
 entry_ref *start_directory = NULL,
 uint32 node_flavors = 0,
 bool allow_multiple_selection = true,
 BMessage *message = NULL,
 BRefFilter *filter = NULL,
 bool modal = false,
 bool hide_when_done = true);

Of the numerous arguments, by far the one of most importance is the first—mode.
The type of panel the BFilePanel constructor creates is established by the value
of mode. Once a BFilePanel object is created, there’s no way to change its type,

Figure 10-1. The standard Save file panel

362 Chapter 10: Files

so you need to know in advance what purpose the panel is to serve. To specify
that the new BFilePanel object be a Save file panel, pass the Be-defined con-
stant B_SAVE_PANEL:

BFilePanel *fSavePanel;

savePanel = new BFilePanel(B_SAVE_PANEL);

To instead specify that the new object be an Open file panel, pass the Be-defined
constant B_OPEN_PANEL. Or, simply omit the parameter completely and rely on
the default value for this argument (see the above constructor definition):

BFilePanel *fOpenPanel;

fOpenPanel = new BFilePanel();

Creating a new panel doesn’t display it. This allows your program to create the
panel at any time, then display it only in response to the user’s request. For an
Open file panel, that’s typically when the user chooses the Open item from the
File menu. For the Save file panel, the display of the panel comes when the user
chooses the Save As item from the File menu. In response to the message issued
by the system to the appropriate MessageReceived() function, your program will
invoke the BFilePanel function Show(), as done here for the fOpenPanel
object:

fOpenPanel->Show();

Assuming you follow normal conventions, the files shown are the contents of the
current working directory. When a panel is displayed, control is in the hands of
the user. Once the user confirms a choice (whether it’s a file selection in the Open
file panel, a click on the Save button in the Save file panel, or a click on the Can-
cel button in either type of panel), a message is automatically sent by the system
to the panel’s target. By default the panel’s target is the application object, but this
can be changed (either in the BFilePanel constructor or by invoking the panel
object’s SetTarget() function). The message holds information about the
selected file or files (for an Open file panel) or about the file that’s to be created
and used to hold a document’s data (for a Save file panel). The details of how to
handle the message generated in response to a user’s dismissing a panel appear in
the next sections.

The File-Handling Base Project

In Chapter 8, Text, you saw ScrollViewWindow, a program that displays a win-
dow with a text area that occupies the entire content area of the window. A sim-
ple text editor lends itself well to file opening and saving, so in this chapter I’ll
modify ScrollViewWindow to make it capable of opening existing text files and

Using Standard Open and Save Panels 363

saving the current document as a text file. Figure 10-2 shows the window the new
FileBase program displays.

While the FileBase program includes menu items for opening and saving files,
you’ll soon see that the program isn’t up to handling those chores yet. Choosing
the Open menu item displays the Open file panel, but selecting a file from the
panel’s list has no effect—the panel is simply dismissed. The Save As menu item
displays the Save file panel, but typing a name and clicking the Save button does
nothing more than dismiss the panel. FileBase serves as the basis (hence the
name) for a file-handling program. I’ll revise FileBase twice in this chapter: once to
add file-saving abilities, and one more time to include file-opening powers. With
the preliminaries taken care of here in FileBase, those two examples can focus
strictly on the tasks of saving and opening a file.

The Application class

FileBase is a spin-off of ScrollViewWindow. A quick look at how that Chapter 8
program has been enhanced makes it easier to follow the upcoming file saving
and opening changes. While looking over the old code, I’ll insert a few changes
here and there to ready the program for the file-handling code. The changes begin
in the MyHelloApplication class definition. In any Be program, a Save file panel
is associated with a particular window—the user will choose Save As to save the
contents of the frontmost window to a file on disk. An Open file panel, though, is
typically associated with the application itself. In the MyHelloApplication class,
a BFilePanel data member has been added to serve as the Open file panel
object, while a MessageReceived() function has been added to support the han-
dling of the message generated by the user choosing the Open menu item:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 virtual void MessageReceived(BMessage *message);

Figure 10-2. The window of the FileBase program

364 Chapter 10: Files

 private:
 MyHelloWindow *fMyWindow;
 BFilePanel *fOpenPanel;
};

The main() function remains untouched—it still serves as the vehicle for creating
the application object and starting the program running:

main()
{
 MyHelloApplication *myApplication;

 myApplication = new MyHelloApplication();
 myApplication->Run();

 delete(myApplication);
 return(0);
}

The application constructor now includes the single line of code needed to create
a new BFilePanel object. No mode parameter is passed, so by default the new
object is an Open file panel. Recall that the BFilePanel constructor creates the
panel, but doesn’t display it.

MyHelloApplication::MyHelloApplication()
 : BApplication("application/x-dps-mywd")
{
 BRect aRect;

 fOpenPanel = new BFilePanel();

 aRect.Set(20, 30, 320, 230);
 fMyWindow = new MyHelloWindow(aRect);
}

As you’ll see ahead, when the user chooses Open from the File menu, the applica-
tion generates a message that’s delivered to the application object. Thus the need
for a MessageReceived() function for the application class. Here the choosing of
the Open menu item does nothing more than display the previously hidden Open
file panel:

void MyHelloApplication::MessageReceived(BMessage *message) {
 switch(message->what) {

 case MENU_FILE_OPEN_MSG:
 fOpenPanel->Show();
 break;

 default:
 BApplication::MessageReceived(message);
 break;
 }
}

Using Standard Open and Save Panels 365

The window class

The window’s one menu now holds an Open item and a Save As item, so two
message constants are necessary:

#define MENU_FILE_OPEN_MSG 'opEN'
#define MENU_FILE_SAVEAS_MSG 'svAs'

The window class functions are the same, but the data members are a bit differ-
ent. The Chapter 8 incarnation of the text editing program defined a BView-
derived class that filled the window and contained the window’s text view and
scroll view. Here I’m content to place the BTextView and BScrollView objects
directly in the window’s top view. Thus the MyHelloWindow class doesn’t include
a MyDrawView member (there is no longer a MyDrawView class), but it does
include the fTextView and fScrollView members that were formerly a part of
MyDrawView. The class now also defines a BFilePanel object to serve as the
window’s Save file panel:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage *message);

 private:
 BMenuBar *fMenuBar;
 BTextView *fTextView;
 BScrollView *fScrollView;
 BFilePanel *fSavePanel;
};

Which is the better way to include views in a window—by defining
an all-encompassing view to nest the other views in, or by simply
relying on the window’s top view? It’s partially a matter of personal
preference. It’s also a matter of whether your program will make
changes that affect the look of a window’s background. The File-
Base program won’t change the overall look of its window (that is, it
won’t do something such as change the window’s background
color), so simply including the views in the window’s top view
makes sense. It also allows for a good example of an alternate
implementation of the Chapter 8 way of doing things!

The MyHelloWindow constructor begins in typical fashion with the setup of the
menu and its items:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)

366 Chapter 10: Files

{
BMenu *menu;
BMenuItem *menuItem;
BRect menuBarRect;

menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
AddChild(fMenuBar);

menu = new BMenu("File");
fMenuBar->AddItem(menu);
menu->AddItem(menuItem = new BMenuItem("Open",

 new BMessage(MENU_FILE_OPEN_MSG)));
menuItem->SetTarget(be_app);
menu->AddItem(new BMenuItem("Save As",

 new BMessage(MENU_FILE_SAVEAS_MSG)));

If you’re referencing the Chapter 8 program from which FileBase is
derived, you’ll see that the MyHelloWindow constructor just lost a
few lines of code. The ScrollViewWindow version of the constructor
started with code to resize the window size-defining rectangle
frame. Since the FileBase window no longer includes a MyDrawView
under the menubar, there’s no need to resize the frame such that it
fills the window, less the menubar area.

The MyHelloWindow constructor next establishes the size of the text view and the
text rectangle nested in that view. The constructor creates the BTextView object,
makes it a part of a BScrollView object, and then adds the scroll view to the
window:

 BRect viewFrame;
 BRect textBounds;

 viewFrame = Bounds();
 viewFrame.top = MENU_BAR_HEIGHT + 1.0;
 viewFrame.right -= B_V_SCROLL_BAR_WIDTH;

 textBounds = viewFrame;
 textBounds.OffsetTo(B_ORIGIN);
 textBounds.InsetBy(TEXT_INSET, TEXT_INSET);

 fTextView = new BTextView(viewFrame, "MyTextView", textBounds,
 B_FOLLOW_ALL, B_WILL_DRAW);

 fScrollView = new BScrollView("MyScrollView", fTextView,
 B_FOLLOW_ALL, 0, false, true);
 AddChild(fScrollView);

Using Standard Open and Save Panels 367

Finally, the Save file panel is created and the window displayed:

 fSavePanel = new BFilePanel(B_SAVE_PANEL, BMessenger(this), NULL,
 B_FILE_NODE, false);

Show();
}

Unlike the creation of the Open file panel, the creation of the Save file panel
requires that a few parameters be passed to the BFilePanel constructor. You
already know that the first BFilePanel argument, mode, establishes the type of
panel to be created. The other parameters are worthy of a little explanation.

The second argument, target, is used to define the target of the message the sys-
tem will deliver to the application in response to the user’s dismissal of the panel.
The default target is the application object, which works well for the Open file
panel. That’s because the Open file panel affects the application, and is refer-
enced by an application data member. The Save file panel, on the other hand,
affects the window, and is referenced by a window data member. So I want the
message sent to the window object rather than the application object. Passing
BMessenger with the window object as the target makes that happen. There’s no
need to preface BMessenger() with new, as the BFilePanel constructor handles
the task of allocating memory for the message.

The other argument that needs to be set is the fifth one—allow_multiple_
selection. Before passing a value for the fifth argument, I need to supply values
for the third and fourth arguments. The third argument, panel_directory, speci-
fies the directory to list in the Open file panel when that panel is first displayed.
Passing a value of NULL here keeps the default behavior of displaying the current
working directory. The fourth argument, node_flavors, is used to specify the
type of items considered to be valid user selections. The Be-defined constant
B_FILE_NODE is the default flavor—it specifies that a file (as opposed to, say, a
directory) is considered an acceptable user choice. The argument I’m really inter-
ested in is the fifth one—allow_multiple_selection. The default value for this
argument is true. FileBase doesn’t support the simultaneous opening of multiple
files, so a value of false needs to be passed here.

FileBase terminates when the user closes a window. As you’ve seen before, that
action results in the hook function QuitRequested() being invoked:

bool MyHelloWindow::QuitRequested()
{
 be_app->PostMessage(B_QUIT_REQUESTED);

 return(true);
}

368 Chapter 10: Files

An application-defined message is issued in response to the user choosing Save As
from the File menu. In response to that message, the program shows the already-
created Save file panel by invoking the BFilePanel function Show().

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case MENU_FILE_SAVEAS_MSG:
 fSavePanel->Show();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Saving a File

Converting FileBase to a program that fully supports file saving is a straightfor-
ward process. No changes are needed in the MyHelloApplication class. The
MyHelloWindow class needs one new member function, a routine that imple-
ments the saving of a window’s data to a file in response to the user’s dismissing
the Save file panel. The SaveAsFile example program adds that one function—the
Save() routine holds the code that implements the saving of a document’s text to
disk. So the class declaration now contains a public declaration of Save():

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage *message);
 status_t Save(BMessage *message);

 private:
 BMenuBar *fMenuBar;
 BTextView *fTextView;
 BScrollView *fScrollView;
 BFilePanel *fSavePanel;
};

When a Save file panel is dismissed, the system sends a B_SAVE_REQUESTED mes-
sage to the affected application. This message is directed to the
MessageReceived() function of the Save file panel’s target. Recall that in the
FileBase program the second parameter passed to the BFilePanel constructor
specified that the window be the target of the Save file panel. So the window’s
implementation of MessageReceived() receives the message. Embedded in this
message is the pathname at which the file is to be saved. MessageReceived()
passes this information on to the application-defined routine Save():

Using Standard Open and Save Panels 369

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case MENU_FILE_SAVEAS_MSG:
 fSavePanel->Show();
 break;

 case B_SAVE_REQUESTED:
 Save(message);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

On the following pages we’ll look first at saving a file using POSIX, then at saving
a file with the Storage Kit.

Using POSIX to save a file

To work with files, you can use either the BFile class or a POSIX file of type
FILE. Here file-saving will be performed using the FILE type—see the sections
“Using the Storage Kit to save a file” and “Opening a File,” for examples of work-
ing with the BFile class.

The Save() function begins with a number of local variable declarations. Each is
described as it’s encountered in the Save() routine:

status_t MyHelloWindow::Save(BMessage *message)
{
 entry_ref ref;
 const char *name;
 BPath path;
 BEntry entry;
 status_t err = B_OK;
 FILE *f;

The message received by MessageReceived() and passed on to Save() has a
what field of B_SAVE_REQUESTED, a directory field that holds an entry_ref,
and a name field that holds the user-entered filename string describing a single
entry in a directory. The directory field’s entry_ref structure points to the
directory to which the user specified the file is to be saved. Invoking the
BMessage function FindRef() strips out this reference and saves it to the entry_
ref variable ref:

 if (err = message->FindRef("directory", &ref) != B_OK)
 return err;

370 Chapter 10: Files

Next, the filename is retrieved from the message. The BMessage function
FindString() saves the message’s name field to the string variable name:

 if (err = message->FindString("name", &name) != B_OK) {
 return err;

The next several steps are performed to get the directory and name into a form
that can be passed to a file-opening routine. Recall that a file consists of an entry
(a location) and a node (data). The entry can be represented by an entry_ref or
a BEntry object. Currently the entry is in the form of an entry_ref. Here the
entry is stored in a BEntry object. The BEntry function SetTo() handles that
task:

 if (err = entry.SetTo(&ref) != B_OK)
 return err;

A BPath object normalizes a pathname. That is, it reformats a pathname to clean it
up by, say, excluding a trailing slash (such as /boot/myDir/). The BEntry func-
tion GetPath() is used to store the BEntry information as a BPath object. Here
the BPath object path is first set to the directory, then the filename is appended
to the directory:

 entry.GetPath(&path);
 path.Append(name);

The somewhat convoluted journey from the message’s entry_ref to a BEntry
object to a BPath object is complete. Now the file directory and name appear
together in a form that can be used in the POSIX file opening function fopen():

 if (!(f = fopen(path.Path(), "w")))
 return B_ERROR;

With a new file opened, it’s safe to write the window’s data. The POSIX file func-
tion fwrite() can be used for that job. The data to write is the text of the win-
dow’s text view. That text is retrieved by calling the BTextView function Text().
The number of bytes the text occupies can be obtained from the BTextView func-
tion TextLength(). After writing the data to the file, call the POSIX file function
fclose():

 err = fwrite(fTextView->Text(), 1, fTextView->TextLength(), f);
 fclose(f);

 return err;
}

Using the Storage Kit to save a file

Using POSIX is straightforward, but so too is using the Storage Kit. Here I’ll mod-
ify the previous section’s version of the application-defined Save() function so
that saving the file is done with a reliance on the Storage Kit rather than on
POSIX:

Using Standard Open and Save Panels 371

status_t MyHelloWindow::Save(BMessage *message)
{
 entry_ref ref;
 const char *name;
 status_t err;

The ref and name variables are again declared for use in determining the direc-
tory to save the file to and the name to give that file. The err variable is again
present for use in error checking. Gone are the BPath variable path, the BEntry
variable entry, and the FILE variable f.

The above code is unchanged from the previous version of Save(). First,
FindRef() is used to strip the directory in which the file should be saved from
the message that was passed to Save(). Then FindString() is invoked to
retrieve the filename from the same message:

 if (err = message->FindRef("directory", &ref) != B_OK)
 return err;
 if (err = message->FindString("name", &name) != B_OK) {
 return err;

Now comes some new code. The location to which the file is to be saved is con-
tained in the entry_ref variable ref. This variable is used as the argument in the
creation of a BDirectory object. To ensure that the initialization of the new direc-
tory was successful, call the inherited BNode function InitCheck():

 BDirectory dir(&ref);
 if (err = dir.InitCheck() != B_OK)
 return err;

A BFile object can be used to open an existing file or to create and open a new
file. Here we need to create a new file. Passing the directory, filename, and an
open mode does the trick. The open mode value is a combination of flags that
indicate such factors as whether the file is to have read and/or write permission
and whether a new file is to be created if one doesn’t already exist in the speci-
fied directory. After creating the new file, invoke the BFile version of
InitCheck() to verify that file creation was successful:

BFile file(&dir, name, B_READ_WRITE | B_CREATE_FILE);
 if (err = file.InitCheck() != B_OK)
 return err;

With a new file opened, it’s time to write the window’s data. Instead of the POSIX
file function fwrite(), here I use the BFile function Write(). The first argu-
ment is the text to write to the file, while the second argument specifies the num-
ber of bytes to write. Both of the BView functions Text() and TextLength()
were described in the POSIX example of file saving. After the data is written

372 Chapter 10: Files

there’s no need to explicitly close the file—a file is automatically closed when its
BFile object is deleted (which occurs when the Save() function exits):

 err = file.Write(fTextView->Text(), fTextView->TextLength());

 return err;
}

Opening a File

You’ve just seen how to save a file’s data using Be classes to work with the file’s
path and standard POSIX functions for performing the actual data writing. Here I’ll
dispense with the POSIX and go with the BFile class. The last example, SaveAs-
File, was derived from the FileBase program. I’ll carry on with the example by
now adding to the SaveAsFile code such that the OpenSaveAsFile example
becomes capable of both saving a text file (using the already developed POSIX
file-saving code) and opening a text file (using the BFile class).

When an Open file panel is dismissed, the system responds by sending the appli-
cation a B_REFS_RECEIVED message that specifies which file or files are to be
opened. Rather than appearing at the target’s MessageReceived() routine,
though, this message is sent to the target’s RefsReceived() function. The Open
file panel indicates that the application is the panel’s target, so a RefsReceived()
function needs to be added to the application class:

class MyHelloApplication : public BApplication {

 public:
 MyHelloApplication();
 virtual void MessageReceived(BMessage *message);
 virtual void RefsReceived(BMessage *message);

 private:
 MyHelloWindow *fMyWindow;
 BFilePanel *fOpenPanel;
};

The implementation of RefsReceived() begins with the declaration of a few
local variables:

void MyHelloApplication::RefsReceived(BMessage *message)
{
 BRect aRect;
 int32 ref_num;
 entry_ref ref;
 status_t err;

The rectangle aRect defines the boundaries of the window to open:

 aRect.Set(20, 30, 320, 230);

Using Standard Open and Save Panels 373

The integer ref_num serves as a loop counter. While the Open file panel used in
the OpenSaveAsFile example allows for only one file selection at a time, the pro-
gram might be adapted later to allow for multiple file selections in the Open file
panel. Creating a loop that opens each file is an easy enough task, so I’ll prepare
for a program change by implementing the loop now:

ref_num = 0;
 do {
 if (err = message->FindRef("refs", ref_num, &ref) != B_OK)
 return;
 new MyHelloWindow(aRect, &ref);
 ref_num++;
 } while (1);
}

The message received by RefsReceived() has a what field of B_REFS_RECEIVED
and a refs field that holds an entry_ref for each selected file. Invoking the
BMessage function FindRef() strips out one reference and saves it to the entry_
ref variable ref. The ref_num parameter serves as an index to the refs array of
entry_refs. After the last entry is obtained (which will be after the first and only
entry in this example), an error occurs, breaking the otherwise infinite do-while
loop.

With an entry obtained, a new window is created. Note that the MyHelloWindow
constructor now receives two parameters: the boundary-defining rectangle the
constructor always has, and a new entry_ref parameter that specifies the loca-
tion of the file to open. Rather than change the existing constructor, the
MyHelloWindow class now defines two constructors: the original and the new
two-argument version:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 MyHelloWindow(BRect frame, entry_ref *ref);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage *message);
 status_t Save(BMessage *message);

 private:
 void InitializeWindow(void);
 BMenuBar *fMenuBar;
 BTextView *fTextView;
 BScrollView *fScrollView;
 BFilePanel *fSavePanel;
};

When the program is to create a new, empty window, the original
MyHelloWindow constructor is called. When the program needs to instead create a

374 Chapter 10: Files

new window that is to hold the contents of an existing file, the new
MyHelloWindow constructor is invoked.

The two MyHelloWindow constructors will create similar windows: each will be
the same size, have the same menubar, and so forth. So the two constructors share
quite a bit of common code. To avoid writing redundant code, the
MyHelloWindow class now defines a new routine that holds this common code.
Each constructor invokes this new InitializeWindow() routine. The file-
opening version of the MyHelloWindow constructor then goes on to implement
file handling.

Note in the above-listed MyHelloWindow class that the InitializeWindow()
routine is declared private. It will be invoked only by other MyHelloWindow
member functions, so there’s no need to allow outside access to it. Because all of
the code from the original version of the MyHelloWindow constructor, with the
exception of the last line (the call to Show()), was moved wholesale to the
InitializeWindow() routine, there’s no need to show the entire listing for this
new function. Instead, a summary is offered below. To see the actual code, refer
back to the walk-through of the MyHelloWindow constructor in this chapter’s “The
File-Handling Base Project” section.

void MyHelloWindow::InitializeWindow(void)
{
 // menu code

 // text view code

 // Save file panel code
}

Almost all of the code found in the original version of the MyHelloWindow con-
structor has been moved to InitializeWindow(), so the original, one-argument
version of the constructor shrinks to this:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 InitializeWindow();

 Show();
}

The new two-argument version of the constructor begins similarly:

MyHelloWindow::MyHelloWindow(BRect frame, entry_ref *ref)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
 InitializeWindow();

Onward 375

With the window set up, it’s on to the file-opening code. In the file-saving exam-
ple, standard POSIX functions were used. Here a BFile object and BFile func-
tions are instead used—beginning with the declaration of a BFile object:

 BFile file;

The second parameter passed to this MyHelloWindow constructor is the entry_
ref for the file to open. That ref variable is used in a call to the BFile function
SetTo() to assign the BFile object a file to open. With the successful assign-
ment of a file to open, it’s on to the actual file-opening. That begins with the dec-
laration of a couple of variables:

 if (file.SetTo(ref, B_READ_ONLY) == B_OK)
 {
 off_t length;
 char *text;

The size of the file to open is determined, and returned, by the BFile function
GetSize():

 file.GetSize(&length);

Sufficient memory is allocated for the file’s contents by a call to malloc():

 text = (char *) malloc(length);

Now it’s time to read the file’s data. The BFile function Read() handles that
chore. The data is text, so it’s saved to the character pointer text. Invoking the
BTextView function SetText() sets the text of the window’s text view to the
read-in text, while a call to free() releases from memory the no-longer-needed
file data. With the window set up and the text view holding the data to display,
there’s nothing left to do but display the window with a call to Show():

 if (text && (file.Read(text, length) >= B_OK))
 fTextView->SetText(text, length);
 free(text);
 }
 Show();
}

Onward
This chapter’s OpenSaveAsFile example is the most complete program in this
book—it actually does something quite useful! Using the techniques presented in
the preceding chapters, you should be able to turn OpenSaveAsFile into a real-
world application. Begin by polishing up the File menu. Add a New item—that
requires just a few lines of code. Also add a Quit item to provide a more graceful
means of exiting the program. Chapter 8 covered text editing in detail—use that
chapter’s techniques to add a complete, functioning Edit menu. Those changes will

376 Chapter 10: Files

result in a useful, functional text editor. If you want to develop a program that’s
more graphics-oriented, go ahead—Chapter 4, Windows, Views, and Messages, and
Chapter 5, Drawing, hold the information to get you started. If you take that route,
then you can always include the text-editing capabilities covered here and in
Chapter 8 as a part of your program. For example, a graphics-oriented application
could include a built-in text editor that allows the user to enter and save notes.

Regardless of the type of application you choose to develop, check out Be’s web
site at http://www.be.com/. In particular, you’ll want to investigate their online
developer area for tips, techniques, and sample code. For reference documenta-
tion, consider the Be Book, Be’s own HTML-formatted documentation. For a more
complete hardcopy version of that book, look into obtaining one or both of the
O’Reilly & Associates books Be Developer’s Guide and Be Advanced Topics.

