blob: 45fa4eca860a9752349bbc6529de0ab0987b122d [file] [log] [blame]
/**
* \file firmware/usbconfig.h
* \brief Configuration options for the USB-driver.
*
* This file is almost identical to the original usbconfig.h by Christian
* Starkjohann, in structure and content.
*
* It contains parts of the USB driver which can be configured and can or must
* be adapted to your hardware.
* \author Ronald Schaten <ronald@schatenseite.de>
* \version $Id: usbconfig.h,v 1.1 2008-07-09 20:47:12 rschaten Exp $
*
* License: GNU GPL v2 (see License.txt)
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/* ---------------------------- Hardware Config ---------------------------- */
/** This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_IOPORTNAME D
/** This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DMINUS_BIT 5
/** This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0!
*/
#define USB_CFG_DPLUS_BIT 2
/* ----------------------- Optional Hardware Config ------------------------ */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
/* #define USB_CFG_PULLUP_IOPORTNAME D */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* #define USB_CFG_PULLUP_BIT 4 */
/* --------------------------- Functional Range ---------------------------- */
/** Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint 1.
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT 1
/** Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 1 and an interrupt-in
* endpoint 3. You must also enable endpoint 1 above.
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/** Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_IMPLEMENT_HALT 0
/** If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_INTR_POLL_INTERVAL 10
/** Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_IS_SELF_POWERED 0
/** Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_MAX_BUS_POWER 100
/** Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 1
/** Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/** Define this to 1 if you want to use interrupt-out (or bulk out) endpoint 1.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to endpoint 1.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/** Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* -------------------------- Device Description --------------------------- */
/** We cannot use Obdev's free shared VID/PID pair because this is a HID.
* We use John Hyde's VID (author of the book "USB Design By Example") for
* this example instead. John has offered this VID for use by students for
* non-commercial devices. Well... This example is for demonstration and
* education only... DO NOT LET DEVICES WITH THIS VID ESCAPE YOUR LAB!
* The Product-ID is a random number.
*
* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you use obdev's free shared
* VID/PID pair. Be sure to read USBID-License.txt for rules!
*/
#define USB_CFG_VENDOR_ID 0x42, 0x42
/** This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you use obdev's free shared VID/PID pair. Be sure to read the rules in
* USBID-License.txt!
*/
#define USB_CFG_DEVICE_ID 0x31, 0xe1
/** Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/** These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USBID-License.txt for
* details.
*/
#define USB_CFG_VENDOR_NAME 'p','u','l','k','o','m','a','n','d','y','.','a','t','h','.','c','x'
/** Length of USB_CFG_DEVICE_VERSION
*/
#define USB_CFG_VENDOR_NAME_LEN 17
/** Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USBID-License.txt before you assign a name.
*/
#define USB_CFG_DEVICE_NAME 'A','m','i','k','e','y','2','u','s','b'
/** Length of USB_CFG_DEVICE_NAME
*/
#define USB_CFG_DEVICE_NAME_LEN 10
/** See USB specification if you want to conform to an existing device class.
* This setting means to specify the class at the interface level.
*/
#define USB_CFG_DEVICE_CLASS 0
/** See USB specification if you want to conform to an existing device subclass.
*/
#define USB_CFG_DEVICE_SUBCLASS 0
/** See USB specification if you want to conform to an existing device class or
* protocol. This is HID class.
*/
#define USB_CFG_INTERFACE_CLASS 0x03
/** See USB specification if you want to conform to an existing device class or
* protocol. This is a boot device.
*/
#define USB_CFG_INTERFACE_SUBCLASS 0x01
/** See USB specification if you want to conform to an existing device class or
* protocol. This is keyboard protocol.
*/
#define USB_CFG_INTERFACE_PROTOCOL 0x01
/** Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
*/
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 63
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor().
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
#endif /* __usbconfig_h_included__ */